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Geospatial Data is Reaching Adulthood

● Dozens of impact evaluations or 
targeting assessments using 
geospatial data over the last ~3 
years.

● Geographers complaining about 
causal identification; Economists 
complaining about spatial spillovers.



No Longer Just Points

● True geometries of aid interventions 
are now being collected at large 
scales.

● Integrating this data with a wide 
variety of spatial data - including 
satellite and other products.



Examples of causally identified studies from 
an increasing number of sectors

● Water and Sanitation (USAID Afghanistan)
● Electrification (MCC Tanzania & Ghana)
● Poverty (IGC Liberia)
● Environment (World Bank IEG, MacArthur, GEF IEO)
● Health (Gates Foundation DRC)
● Emergent studies on governance and female empowerment 

(AfroBarometer)



Solutions to a growing number of 
methodological concerns in the use of 
spatial data

● Spatial Uncertainty - SIMEX, Bayesian Approaches
● Spillover in treatment effects - GeoMatch, distance-restricted control 

identification, new research into lag-based modeling.
● Spatial heterogeneity in effects - Causal matching GWR, Causal Trees
● Data integration and access - GeoQuery (more on this very soon!)
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(1) Portfolio-wide impact evaluation (top-down)
(2) Identification of factors frequently associated with positive outcomes
(3) Valuation in terms of Carbon Sequestration

Objectives







Outcomes

● Forest Cover
● Vegetative Density
● Forest Fragmentation



Methodological Approach

1. Geoparsing and coding GEF project locations
2. Integrating Satellite, Fragmentation, Survey, and Other Data Sources
3. Causal Inference through Cross-sectional Matching
4. Valuation of Impacts



1. Geoparsing and Coding



2. Data Integration

● Multi-sourced (including data from NASA, NOAA, a wide number of 
academic research groups, GEF project characteristics, and more.

● Multi-resolution (Monte Carlo simulation to capture uncertainties)
● Ancillary data included:

○ Distances to roads, rivers, cities, a variety of economic sites (i.e., on-shore petroleum 
resources, diamond mines), rainfall, precipitation, nighttime lights, GEF characteristics 
such as dollar value of project and year, and more. 



3. Causal Model

● Cross-sectional 
matching (with 
temporal components 
on some dimensions).

● Propensity 
Score-based

● Causal Tree to capture 
spatial heterogeneity.







4. Valuation

● Literature meta-review 
transfer approach.

● No assumptions on modeling 
made; tool produced to 
enable end-users to choose 
valuations.

● Mean valuation in literature 
used to report findings.



Key Findings

● Approximately 40 tonnes of carbon sequestration was attributable to GEF 
projects, on average per hectare.

● This resulted in approximately 100,000 tonnes of carbon per project.
● The mean valuation from the literature resulted in an estimated 7.5 million 

USD value of this sequestration.



Key Findings - Heterogeneity

● ~5 years was a robust breakpoint across many analyses of when impacts 
became most apparent.

● Projects tended to be more effective in urban or higher population density 
areas, though more often located in lower population areas.

● Significant heterogeneity in valuation for carbon sequestration over 
geographic space.

● Clear and compelling evidence for positive GEF impacts on NDVI and 
forest cover; limited evidence for forest fragmentation (for the Land 
Degradation Portfolio).



GEF land degradation 
project valuations



Learning from Project Success / Next Steps

● Heterogeneity in project outcomes along geographic dimensions allows 
for estimates of characteristics that might drive project success.

● While globally the 5 year threshold was found, many local characteristics 
were also positive drivers.

● For example, in some geographic contexts MFA projects outperformed 
SFA.  While distance to roads was generally important, the distance 
thresholds themselves changed over different regions.



Case Study 2:
Indigenous Land Rights in the Amazon

Ariel BenYishay1,Silke Heuser2, Rachel Trichler1, Dan Runfola1

1 AidData, William and Mary
2  KFW



Objective

Does demarcating indigenous lands reduce deforestation?

• Land tenure security not widely shown to reduce deforestation

• Indigenous control / stewardship shown in several recent studies to be associated 
with lower deforestation rates (Nelson et al 2001, Nelson and Chomitz 2012, Nolte 
et al 2013, Vergara-Aseno and Potvin 2014)

• Given low rates of deforestation observed on indigenous lands, is demarcation 
likely to influence deforestation?



Project Details

• In 1988 constitution, Gov of Brazil committed to demarcating indigenous 
people’s territories

• Between 1995-2008, with funding and tech support from KfW and the World 
Bank, the PPTAL project identified, recognized, and studied 181 community 
lands. 

• By 2008, 106 community lands demarcated, covering 38 million hectares 
(~35% of all indigenous lands in Amazon)



Project Details

• Demarcation: recognition by the Min of Justice
• Followed by regularization (entry into municipal, state and federal registries)
• Varied by community between 1995 and 2008

• Median year is 2001
• Support for Boundary Enforcement



Data

• Treatment status
• Boundaries of community lands
• Administrative data on demarcation dates

• Merged with satellite-based greenness measure
• NASA Land Long Term Data Record (LTDR), 1982-2010
• Processed to Normalized Difference Vegetation Index (NDVI)
• Range is [0, 1] (0 = rocky, barren; 1 = dense forest)
• Annual NDVI max and mean measures

• Covariates
• Climate (precip., temp.); topology (elevation, slope); distance to rivers; gridded, interpolated 

population



Methods

• Propensity Score Matching 
• Differences over time across matched treated/comparison communities
• Match on baseline levels, pre-trends, & covariates
• Demarcated vs. not;  “Early” (‘95-’01) vs “Late” (‘01-’08)

• Fixed effects
• Control for time-invariant community unobservables
• Treatment status at finer time intervals



Methods



Methods
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Demarcated vs. 
non-demarcated

● Treatment = 
Demarcated between 
’95 and ’08

● Outcome = Change in 
mean NDVI between 
‘95 and ’10

● Control for years in 
demarcation status; 
matched pairs of 
demarcated and 
non-demarcated 
(n=60).



Early vs. Late 
demarcation

● Treatment = 
Demarcated between 
’95 and ’01

● Outcome = Change in 
mean NDVI between 
‘95 and ’10

● Control for years in 
demarcation status; 
matched pairs of 
demarcated lands 
(n=80).



Panel Model

● Treatment = Year of 
demarcation.

● Outcome = Level of 
NDVI (max) each year

● Fixed effects, year 
trends.

● 2,128 annual 
observations; errors 
clustered by 
community and year.

Treatment_Demarcation

Treatment_Enforcement



Take-aways

• No clear, robust evidence of differences in 
deforestation attributable to the PPTAL project

• Much lower rates of deforestation on indigenous 
lands in cross-section may not be related to land 
tenure status of these lands (or may be mediated 
through multiple, complex channels)



Questions







Causal tree 
NDVI



Causal tree 
Forest cover



NDVI trends


