Geospatial Data to Evaluate and Target Aid

Dan Runfola, Senior Geospatial Scientist, AidData

Geospatial Data is Reaching Adulthood

- Dozens of impact evaluations or targeting assessments using geospatial data over the last ~3 years.
- Geographers complaining about causal identification; Economists complaining about spatial spillovers.

No Longer Just Points

- True geometries of aid interventions are now being collected at large scales.
- Integrating this data with a wide variety of spatial data - including satellite and other products.

Examples of causally identified studies from an increasing number of sectors

- Water and Sanitation (USAID Afghanistan)
- Electrification (MCC Tanzania & Ghana)
- Poverty (IGC Liberia)
- Environment (World Bank IEG, MacArthur, GEF IEO)
- Health (Gates Foundation DRC)
- Emergent studies on governance and female empowerment (AfroBarometer)

Solutions to a growing number of methodological concerns in the use of spatial data

- **Spatial Uncertainty** SIMEX, Bayesian Approaches
- **Spillover in treatment effects** GeoMatch, distance-restricted control identification, new research into lag-based modeling.
- **Spatial heterogeneity in effects** Causal matching GWR, Causal Trees
- **Data integration and access** GeoQuery (more on this very soon!)

Case Study 1: Geospatial Impact Evaluation and Valuation of Land Degradation Projects

Juha Uitto¹,Geeta Batra¹, Anupam Anand¹, Dan Runfola², Ariel BenYishay² and Jyothy Nagol³

¹Independent Evaluation office, Global Environment Facility ²College of William and Mary ³ Global Land Cover Facility, University of Maryland

Objectives

- (1) Portfolio-wide impact evaluation (top-down)
- (2) Identification of factors frequently associated with positive ou
- (3) Valuation in terms of Carbon Sequestration

PORTFOLIO HIGHLIGHTS

237 projects

\$2.97 billion

Number of projects*

Top 3 agencies*

43% UN Development Programme 17% World Bank Group 17% UN Environment Programme

Regional distribution* 34% Africa

24% Asia 20% Latin America & Caribbean 13% Europe and Central Asia 7% Global 2% Regional

Total GEF funding per region*

*Includes LDFA and multifocal projects.

Outcomes

- Forest Cover
- Vegetative Density
- Forest Fragmentation

Framework for Monitoring and Reporting on SDG Target 15.3 Indicator 15.3.1 Proportion of land that is degraded over total land area **Carbon Stocks** Land Productivity above/below ground Sub -Indicators UNCCD (CBD, UNFCCC) **Reporting Mechanisms** Land Cover and Land Cover Change Land Use and Surveys, Sampling and **Official Statistics Citizen Sourcing Management Practices** and Earth Observation Data from multiple sources FAO, GEF and other **Reporting Mechanisms**

Methodological Approach

- 1. Geoparsing and coding GEF project locations
- 2. Integrating Satellite, Fragmentation, Survey, and Other Data Sources
- 3. Causal Inference through Cross-sectional Matching
- 4. Valuation of Impacts

1. Geoparsing and Coding

Location of GEF Land Degradation Projects Known with a High Degree of Geographic Precision

2. Data Integration

- Multi-sourced (including data from NASA, NOAA, a wide number of academic research groups, GEF project characteristics, and more.
- Multi-resolution (Monte Carlo simulation to capture uncertainties)
- Ancillary data included:
 - Distances to roads, rivers, cities, a variety of economic sites (i.e., on-shore petroleum resources, diamond mines), rainfall, precipitation, nighttime lights, GEF characteristics such as dollar value of project and year, and more.

3. Causal Model

- Cross-sectional matching (with temporal components on some dimensions).
- Propensity
 Score-based
- Causal Tree to capture spatial heterogeneity.

4. Valuation

- Literature meta-review transfer approach.
- No assumptions on modeling made; tool produced to enable end-users to choose valuations.
- Mean valuation in literature used to report findings.

Key Findings

- Approximately 40 tonnes of carbon sequestration was attributable to GEF projects, on average per hectare.
- This resulted in approximately 100,000 tonnes of carbon per project.
- The mean valuation from the literature resulted in an estimated 7.5 million USD value of this sequestration.

Key Findings - Heterogeneity

- ~5 years was a robust breakpoint across many analyses of when impacts became most apparent.
- Projects tended to be more effective in urban or higher population density areas, though more often located in lower population areas.
- Significant heterogeneity in valuation for carbon sequestration over geographic space.
- Clear and compelling evidence for positive GEF impacts on NDVI and forest cover; limited evidence for forest fragmentation (for the Land Degradation Portfolio).

GEF land degradation project valuations

-60,426 5,000,000 10,000,000 15,000,000 17,598,269

Learning from Project Success / Next Steps

- Heterogeneity in project outcomes along geographic dimensions allows for estimates of characteristics that might drive project success.
- While globally the 5 year threshold was found, many local characteristics were also positive drivers.
- For example, in some geographic contexts MFA projects outperformed SFA. While distance to roads was generally important, the distance thresholds themselves changed over different regions.

Case Study 2: Indigenous Land Rights in the Amazon

Ariel BenYishay¹, Silke Heuser², Rachel Trichler¹, Dan Runfola¹

¹ AidData, William and Mary ² KFW

Objective

Does demarcating indigenous lands reduce deforestation?

- Land tenure security not widely shown to reduce deforestation
- Indigenous control / stewardship shown in several recent studies to be associated with lower deforestation rates (Nelson et al 2001, Nelson and Chomitz 2012, Nolte et al 2013, Vergara-Aseno and Potvin 2014)
- Given low rates of deforestation observed on indigenous lands, is demarcation likely to influence deforestation?

Project Details

- In 1988 constitution, Gov of Brazil committed to demarcating indigenous people's territories
- Between 1995-2008, with funding and tech support from KfW and the World Bank, the PPTAL project identified, recognized, and studied 181 community lands.
- By 2008, 106 community lands demarcated, covering 38 million hectares (~35% of all indigenous lands in Amazon)

Project Details

- Demarcation: recognition by the Min of Justice
- Followed by regularization (entry into municipal, state and federal registries)
- Varied by community between 1995 and 2008
 - Median year is 2001
- Support for Boundary Enforcement

Data

- Treatment status
 - Boundaries of community lands
 - Administrative data on demarcation dates
- Merged with satellite-based greenness measure
 - NASA Land Long Term Data Record (LTDR), 1982-2010
 - Processed to Normalized Difference Vegetation Index (NDVI)
 - Range is [0, 1] (0 = rocky, barren; 1 = dense forest)
 - Annual NDVI max and mean measures
- Covariates
 - Climate (precip., temp.); topology (elevation, slope); distance to rivers; gridded, interpolated population

Methods

Propensity Score Matching

- Differences over time across matched treated/comparison communities
- Match on baseline levels, pre-trends, & covariates
- Demarcated vs. not; "Early" ('95-'01) vs "Late" ('01-'08)
- Fixed effects
 - Control for time-invariant community unobservables
 - Treatment status at finer time intervals

Demarcated vs. non-demarcated

- Treatment = Demarcated between '95 and '08
- Outcome = Change in mean NDVI between
 '95 and '10
- Control for years in demarcation status; matched pairs of demarcated and non-demarcated (n=60).

Treatment Enforcement Years NDVI PreTrends NDVI Baseline Area Population Mean Temp Temp Trends Mean Precip Precip Trends Slope Elevation River Distance Road Distance

Cross-Section Results, Max NDVI, 1995-2010

Early vs. Late demarcation

- Treatment = Demarcated between '95 and '01
- Outcome = Change in mean NDVI between '95 and '10
- Control for years in demarcation status; matched pairs of demarcated lands (n=80).

Take-aways

- No clear, robust evidence of differences in deforestation attributable to the PPTAL project
- Much lower rates of deforestation on indigenous lands in cross-section may not be related to land tenure status of these lands (or may be mediated through multiple, complex channels)

Questions

	[90.00,130.0]
٠	(130.8,164.8]
٠	(164.8, 198.8]
	(198.8, 232.8]
•	(232.8,266.7]

Matched Model: SEA Land	(Treated) Null	Case Com	narisons (Control)
Matched Mouch of 11 Lund	(incuccu), inun	Cuse Com	put isons (Controly

	Dependent variable:
	NDVI Diff pre-post implementation
treatment	0.08*** (0.03, 0.14)
Dist. to Rivers (m)	-0.04 (-0.14, 0.07)
Dist. to Roads (m)	0.06* (-0.01, 0.12)
Elevation (m)	-0.18**** (-0.31, -0.06)
Slope (degrees)	-0.11** (-0.21, -0.02)
Urb. Dist. (rel)	-0.01 (-0.08, 0.07)
Pop. Density (2000)	0.06 (-0.04, 0.17)
Protected Area %	0.09^{***} (0.03, 0.14)
Treecover (2000, %)	0.05 (-0.04, 0.13)
Latitude	-0.09* (-0.18, 0.003)
Longitude	-0.13**** (-0.22, -0.03)
Max Precip. (2002, mm)	-0.42**** (-0.58, -0.27)
Min Precip (2002, mm)	-0.08* (-0.17, 0.01)
Mean Precip (2002, mm)	0.27*** (0.08, 0.45)
Max Temp (2002, C)	0.004 (-0.33, 0.34)
Min Temp (2002, C)	-0.28 (-0.78, 0.22)
Mean Temp (2002, C)	-0.23 (-0.98, 0.52)
Nightime Lights (2002, Relative)	-0.02 (-0.10, 0.06)
NDVI (2002, Unitless)	0.01 (-0.07, 0.10)
Urb. Dist. (rel) *Treatment	-0.004 (-0.08, 0.07)
Dist, to Rivers (m) *Treatment	-0.04 (-0.14, 0.07)
Dist, to Roads (m) *Treatment	-0.03 (-0.10, 0.04)
Pop. Density (2000) *Treatment	-0.06 (-0.17, 0.04)
Latitude *Treatment	0.03 (-0.06, 0.12)
Longitude *Treatment	0.08 (-0.02, 0.17)
NDVI (2002, Unitless) *Treatment	0.07* (-0.01, 0.15)
Elevation (m) *Treatment	$0.25^{***}(0.12, 0.37)$
Slope (degrees) *Treatment	-0.12** (-0.22, -0.02)
Treecover (2000 %) *Treatment	-0.03(-0.11, 0.06)
Max Temp (2002, C) *Treatment	$0.57^{***}(0.24, 0.90)$
Mean Temp (2002 C) *Treatment	1.05**** (1.80, 0.31)
Min Tomp (2002, C) *Treatment	-1.05 (-1.80, -0.31)
Max Presin (2002, C) *Treatment	0.80 (0.30, 1.30)
Max Precip. (2002, mm) *Treatment	-0.06 (-0.21, 0.10)
Mean Precip (2002, mm) * Treatment	0.06 (-0.12, 0.25)
Min Precip (2002, mm) * I reatment	-0.12 (-0.20, -0.03)
Nightime Lights (2002, Relative) *Treatment	t 0.01 (-0.06, 0.09)
Protected Area % * Treatment	-0.02 (-0.07, 0.04)
Constant	-0.01 (-0.06, 0.05)
Observations	966
R ²	0.30
Adjusted R ²	0.27
Note:	*p<0.1; **p<0.05; ****p<0.01

Estimated Mean Impact NDVI Diff pre-post implementation

NDVI trends

AidData Open Data for International Development