

QUALITATIVE COMPARATIVE ANALYSIS

WHAT, WHY, HOW, AND UNDER WHAT CONDITIONS

WHAT IS QCA?

- method to systematically compare cases and find common patterns using set theory/
 Boolean algebra
 - bridges qualitative and quantitative analysis
 - has roots in social science research (developed by Ragin in 1987), first used in evaluation by Befani,
 Lederman and Sager (2007)
 - answers the question: what combination/s of factors lead to a specific outcome? More specifically:
 - Are any factors necessary and/or sufficient for an outcome?
 - Are any factors necessary for a combination to be sufficient?
 - What works, why, and under what conditions?

THE USUAL QUANTITATIVE METHODS

- Statistics is based on the <u>probability</u> of something being true based on <u>frequency</u> of occurrence
 - typically tries to reduce a large population into a single number to "summarize" a particular characteristic that
 is then easy to compare with another population
 - if sample size is small, or samples quantitatively not very different, result will be "no significant difference" = "unable to assess"
 - multivariate statistics (e.g. regression, clustering, PCA) still focus mostly on degrees of influence of individual variables rather than on interaction effects
- Experimental/ quasi-experimental evaluation aims to isolate the effect of a specific variable
 - to test effects of multiple "treatments", a comparable group for each combination of treatments has to be set up
 - "with" and "without" groups have to be as identical as possible (or are assumed to be)

WHAT QCA IS USEFUL FOR

- Fills the gap of the "no man's land" of 5 to 30 cases
 - Too many for case study approaches to "fit in one's head", too few for statistical analyses
 - Developments in technology make large sample size no longer an issue
- Generalizes across a specific set of cases while preserving nuances of each case
- Makes explicit the theoretical assumptions between causes and effects
- Allows testing and refining of different hypotheses on the same set of cases
- Uncovers multiple causal pathways in complex systems
- For impact evaluation: built-in counterfactual analysis when comparing cases

BASIC STEPS

- 1. Identify the outcome of interest and cases that exhibit this outcome.
- 2. Identify cases where the outcome was expected, but did not happen.
- 3. Identify the streamlined causal factors/ "recipes" that might lead to the outcome (detailed theories of change).

STEPS I AND 2

- OUTCOME: Mass protest against austerity measures mandated by IMF as conditions for debt renegotiation
- Positive cases e.g. Peru, Argentina, Tunisia
- Negative cases (debtor countries but no mass protest = outcome could be expected but did not happen) e.g. Mexico, Costa Rica

STEP 3

- Some relevant causal factors
 - Severity of austerity measures, degree of debt, living conditions, consumer prices, prior levels of political mobilization, government corruption, trade dependence, investment dependence, urbanization
 - Streamlining: high levels of trade dependence OR high levels of investment dependence are manifestations of international economic dependence -> combine two factors as one
 - One causal recipe: severe austerity measures*government corruption, rapid consumer price increases*high level of prior mobilization = mass protest

BASIC STEPS

- 4. Collect consistent data on most relevant factors, and define scoring criteria for each factor and outcome.
- 5. Construct a truth table with most probable "recipes" to map out cases with comparable data and see patterns.
- 6. Identify cases with similar combination of factors but different outcomes. Resolve contradictions using in-depth case knowledge, revising scores and factors, or excluding cases as appropriate.

ROW	Prior Mobilization	Severe austerity	Corrupt govt	Rapid price rise	Cases w/ Protest	Cases wlo Protest	Consistency
1	0	0	0	0	0	0	??
2	0	0	0	1	0	0	??
3	0	0	1	0	0	4	0.0
4	0	0	1	1	I	5	0.167
5	0	1	0	0	0	0	??
6	0	1	0	1	4	0	1.0
7	0	1	1	0	0	0	??
8	0	1	1	1	5	0	1.0
9	1	0	0	0	0	3	0.0
10	1	0	0	1	I	7	0.125
11	1	0	1	0	0	10	0.0
12	1	0	1	1	0	0	??
13	1	1	0	0	I	5	0.167
14	1	1	0	1	6	0	1.0
15	1	1	1	0	6	2	0.75
16	1	1	1	1	8	0	1.0

ROW	Prior Mobilization	Severe austerity	Corrupt government	Rapid price rise	Cases wl Protest	Cases wlo Protest	Consistency
1	0	Parfa	ct°cc	onsis	tehe	0	??
2	0			دادٍا ار	CCLIC	• 0	??
3	0	0	1	0	0	4	0.0
4	0	0	1	1	I	5	0.167
5	0	1	0	0	0	0	??
6	0	1	0	1	4	0	1.0
7	0	1	1	0	0	0	??
8	0	1	1	1	5	0	1.0
9	1	0	0	0	0	3	0.0
10	1	0	0	1	I	7	0.125
11	1	0	1	0	0	10	0.0
12	1	0	1	1	0	0	??
13	1	1	0	0	I	5	0.167
14	1	1	0	1	6	0	1.0
15	1	1	1	0	6	2	0.75
16	1	1	1	1	8	0	1.0

STEP 6

- Possible combinations but not observed in any case sampled = ??
- Contradictory combinations = between 0 and I
 - 0.5 = perfect inconsistency → some other factor might be making the difference or factors are not that relevant
- Three unexpected positive cases (rows 4,10,13) are spillovers of sympathy for neighboring countries \rightarrow irrelevant to this recipe, so can be taken out
- Two unexpected negative cases (row 15) have very repressive regimes → add "repressive regime" as factor and revise truth table

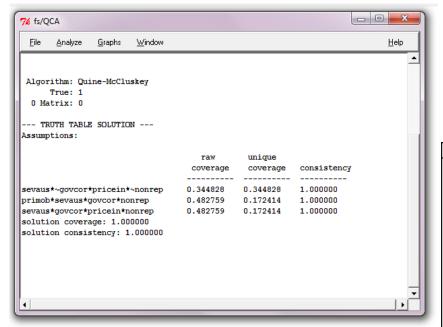
Revised truth table \rightarrow no inconsistencies

Prior Mobilization	Severe austerity	Corrupt government	Rapid price rise	Non-repressive regime	Cases wl Protest	Cases wlo Protest	Consistency
0	0	1	0	0	0	4	0.0
0	0	1	1	0	0	5	0.0
0	1	0	1	0	4	0	1.0
0	1	1	1	1	5	0	1.0
1	0	0	0	0	0	3	0.0
1	0	0	1	1	0	7	0.0
1	0	1	0	0	0	10	0.0
1	1	0	0	1	0	5	0.0
1	1	0	1	0	6	0	1.0
1	1	1	0	1	6	0	1.0
1	1	1	0	0	0	2	0.0
1	1	1	1	1	8	0	1.0

BASIC STEPS

- 7. Using the software, simplify combinations of factors through paired case comparisons and theoretical combinations (?? = not represented by actual cases).
- 8. Software will generate smaller set of simpler combinations with positive outcome. Evaluate resulting combinations against cases and existing theories for consistency, new insights, etc.
- Revise factors, outcome and scores as needed through further within-case analysis, especially after investigating "deviant" cases.

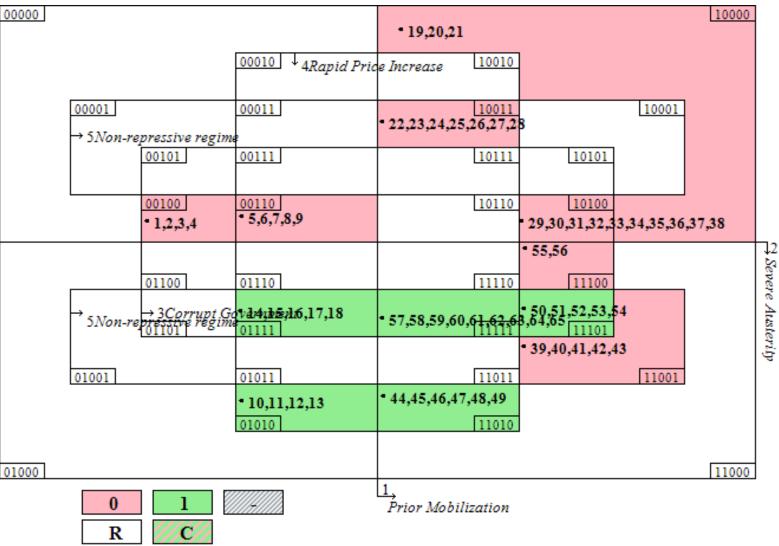
STEP 7


Prior Mobilization	Severe austerity	Corrupt government	Rapid price rise	Non-repressive regime	OUTCOME	
1	1	1	0	1	I	
1	1	1	1	1	I	
			Coun	terfactual analysis	<u>. </u>	iminate "Rapid price in one combination

Prior Severe Austerity	Corrupt government	Rapid price rise	Non-repressive regime	OUTCOME
0 1	0	1	0	1
0 1	1	1	0	?? —

<u>Is a corrupt government more likely to result in protest or no protest?</u>

→ can eliminate "Corrupt government" in one combination



fsQCA

- Necessary but insufficient: Severe austerity
- Sufficient combinations but not necessary: each green square

Tosmana

VARIATIONS IN USE AND POTENTIAL COMBINATIONS

- Multi-value (mvQCA)
- Different degrees of membership (fsQCA)
- Realist evaluation (context-mechanism-outcome)
- Multi-step/ scalar approach (e.g. remote and proximate factors, national and local)
- Longitudinal comparison
- Process tracing, contribution analysis
- Bayesian statistics, multiple regressions

QCA IN THE GEF IEO

Progress towards Impact

- codified TEs, used most dominant factors for QCA as next step
- broader adoption initiated by project*stakeholder support*project design NOT poor = Broader adoption initiatives adopted or implemented (89%)

Biodiversity

- Done at levels of PA and PA System (two scales of GEF support)
- Field work by different consultants then two-day workshop to identify factors and score them
- 27 factors, grouped into Management Capacity, Community, and Context to reflect hypothesis
- showed importance of community awareness, not necessarily participatory approaches; supported results of mixed-effects modeling and METT data
- INUS analysis not completed → in what sufficient combinations of factors is GEF support necessary for the outcome to occur, if any?

QCA IN THE GEF IEO

- Programmatic Approaches
 - will test the importance of country ownership (and maybe particular elements of country ownership) in success of programmatic approaches
 - need to carefully define what outcome we want to find causal pathways for
 - select cases both successful and unsuccessful in that outcome, and ideally cases that have both presence and absence of country ownership
- Multiple Benefits....

LESSONS LEARNED

- Can be time-consuming
 - needs a lot of time for reflection, common understanding among evaluators
 - iterative interaction between team and methods specialist → need to be very involved in calibration of scores, minimization of factors using theoretical combinations, review of cases showing sufficient combinations
- Results can be very sensitive to changes in scoring or causal recipes tested
 - need very narrow definitions to distinguish "I" and "0"
 - need to identify factors with clear, distinct and direct causal links to outcome
 - need complete data for all cases across variables

LESSONS LEARNED

- Not a substitute for in-depth within-case analysis methods
- Best if some prior analysis is done by codifying field data, apart from less structured methods

SUMMARY OF COMPARATIVE ADVANTAGES

- Adds more rigor to case study synthesis and comparison, mitigates biases in traditional qualitative approaches
 - Internally valid because uses replicable procedures based on mathematical logic
- Based on empirical data, no need to set up control and treatment \rightarrow "natural experiment"
- Assumes complex causality that can be stated in terms of set theory (necessity and sufficiency)
- Can handle/ uncover non-linear relationships (not 1:1 progression, tipping points) e.g. same factors
 may have different effects when combined with other factors
- Considers context (other factors) when assessing the effect of a factor's presence or absence \rightarrow absence of a factor ("0") is also a contributing factor
- Tests for necessity and/ or sufficiency of factors for producing outcome vs. effect of factor on outcome
 - Interaction effects can be calculated using statistics only to a certain degree, but is different from logical intersection

SUMMARY OF LIMITATIONS AND WAYS TO MITIGATE

- May miss unidentified factors
 - more in-depth examination of contradictory cases
- May be subject to systematic biases (e.g. selection bias)
 - re-examine theory of change to thoroughly account for factors
 - search for examples of other possible outcomes/ causes in literature
- Needs in-depth knowledge of cases and enough time for several rounds of within-case analysis and cross-case comparisons
 - results obtained through can induce further case selection and/or redefinition of sets that describe
 the conditions and the outcome; inform further within-case analyses and expand the knowledge of
 the cases; and generate new hypotheses/ theories

QUESTIONS?

BASIC STEPS

- I. Identify the outcome of interest and cases that exhibit this outcome.
- 2. Identify cases where the outcome was expected, but did not happen.
- 3. Identify the streamlined causal factors/ "recipes" that might lead to the outcome (detailed theories of change).
- 4. Collect consistent data on most relevant factors, and define scoring criteria for each factor and outcome.
- 5. Construct a truth table with most probable "recipes" to map out cases with comparable data and see patterns.
- 6. Identify cases with similar combination of factors but different outcomes. Resolve contradictions using in-depth case knowledge, revising scores and factors, or excluding cases as appropriate.
- 7. Using the software, simplify combinations of factors through paired case comparisons and theoretical combinations (not represented by actual cases).
- 8. Software will generate smaller set of simpler combinations with positive outcome. Evaluate resulting combinations against cases and existing theories for consistency, new insights, etc.
- 9. Revise factors, outcome and scores as needed through further within-case analysis, especially after investigating "deviant" cases.

- Combines strengths of qualitative and quantitative methods by linking theory and evidence while providing increased measurement precision
- Refocuses attention on context vs "best practices"

